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Abstract. This paper is concerned with the reconstruction of the zero and non-zero elements4
of the sparse parameter vector of stochastic systems with general observation sequences. A sparse5
parameter identification algorithm based on Lγ penalty with 0 < γ < 1 and the residual sum of6
squares is proposed. Without requiring independently and identically distributed (i.i.d) and station-7
ary conditions on the observation sequences, the proposed algorithm is proved that not only the8
contributing variable corresponding to the non-zero parameters can be selected out with probability9
converging to one, but also the estimates of the non-zero parameters have the asymptotic normality10
property. In order to improve the performance of the Lγ regularization method, a two-step algorithm11
based on adaptively weighted Lγ penalty with 0 < γ ≤ 1 is designed, whose set and parameter al-12
most sure convergence are established with non-i.i.d and non-stationary observation sequences. The13
proposed methods are applied to the structure selection of the nonlinear autoregressive models with14
exogenous variables and the sparse parameter identification of the linear feedback control systems.15
Finally, three numerical examples are given to verify the efficiency of the theoretical results.16
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1. Introduction. The sparsity problems are occurring in many areas of scien-20

tific research and engineering practice and have attracted considerable attention in21

recent years. Exemplary applications involve image processing [25, 30], wireless com-22

munication [13, 27], biometrics [31], compressed sampling [3], and so on. One of the23

most interesting issues is the exact reconstruction of zero and non-zero elements of24

sparse parameter vectors. This is of great importance in engineering applications as it25

provides a way to implement a parsimonious model with better predictive performance26

and can reduce the curse of dimensionality.27

Classical parameter identification is a rapidly developing field for the reconstruc-28

tion of system elements and has achieved a great success in both theoretical research29

and practical applications [6, 26]. A series of prestigious methods have been devel-30

oped, including stochastic gradient descent, stochastic approximation, least-squares31

(LS), least mean square, and so on. These methods are usually obtained by min-32

imizing some criteria such as the square error between the predicted and observed33

signals, and have some theoretical properties, such as consistency, convergence rate,34

asymptotic normality, etc. However, for sparse systems, since they tend to be high-35

dimensional or have a limited number of samples, these classical theories and methods36

will no longer be valid.37

In the field of statistics, a number of effective and widely used methods have38

emerged for sparse problems [9]. For instance, there are several classical criteria to39

implement variable selection, such as Akaike’s information criterion (AIC) [1] and40
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Bayesian information criterion (BIC) [32]. However, they are not applicable to high-41

dimensional data as they may involve solving NP-Hard optimization problems. Subse-42

quently, regularization methods are proposed and widely used as a solution to sparse43

problem. Typically, regularization is designed by adding a penalty term to the LS44

objective, where the penalty term is generally defined as a norm over the parameter45

space. L0 regularization is the first regularization method applied to variable selec-46

tion, which can produce the sparsest solution, but requires solving a combinatorial47

optimization problem, whose complexity grows exponentially with dimension. [33]48

proposed an alternative method called LASSO which converts the combinatorial opti-49

mization problem of variable selection into an easily solvable quadratic programming50

problem, but is not as sparse as L0 regularization. Thereafter, various regularization51

methods such as smoothly clipped absolute deviation [9], adaptive LASSO [43], elastic52

net [44], etc., have become the main tools for data analysis. In addition, [18] consid-53

ers the asymptotic behavior of regression estimates that minimize the sum of squared54

residuals plus the Lγ penalty. [37] and [38] addressed the particular importance of55

L1/2 regularization in sparse modeling and obtained promising practical results in56

image processing, matrix filling, etc.57

With the rapid development of variable selection in statistics, some of these ideas58

and methods have been applied to stochastic systems and control. For instance, [34]59

used the L0 regularization to obtain the sparsest estimate of the parameter vector.60

[24] utilized L1 regularization to identify the system parameters and predict future61

signals assuming that the output noise components exhibited strong seriality and62

cross-sectional correlation. [42] introduced an LS sparse parameter identification al-63

gorithm based on L1 penalty with adaptive weights and proved its convergence with64

general observation sequences, and then [12] generalized this approach to Multivariate65

ARMA Systems with Exogenous Inputs. In addition, some non-convex regularization66

methods are also employed for stochastic systems. [11] suggested a simple numerical67

scheme to compute solutions with minimal Lγ norm and studied its convergence. [29]68

proposed a new sparse signal reconstruction algorithm based on the minimization of69

the squared error of a smooth Lγ (γ < 1) norm regularization, which provided bet-70

ter signal reconstruction performance. [36] presented generalized shrinkage penalties71

with explicit proximal mappings and thus gave iterative γ-shrinkage iterative algo-72

rithms that could be implemented to accurately recover a given sparse data with a73

given measurement matrix. However, these papers about non-convex penalized meth-74

ods, do not give theoretical results like that in [42]: whether the solutions obtained75

by non-convex regularization methods are still convergent in the non-stationary and76

non-independently and identically distributed (i.i.d) situation.77

Motivation of this work. As known in the literature, the L1 regularization78

method has led to remarkable progress in sparse problems. However, L1 regulariza-79

tion suffers from bias, leading to a heavily biased estimate and not achieving reliable80

recovery with the least observations [4]. Besides, L1 regularization may produce in-81

consistent selections when applied to some situations [43]. In contrast, the non-convex82

penalty such as Lγ (0 < γ < 1) regularization has the advantage of improving the bias83

problem and has led to significant performance improvements in many applications.84

For instance, [19] demonstrated the very high efficiency of applying L1/2 and L2/385

regularization to image deconvolution. This motivates us to investigate non-convex86

penalties in the fields of systems and control. However, in the existing literature on87

the non-convex regularization, the noise is usually required to be i.i.d or there is prior88

knowledge of the sample probability distribution, or the observed sequences are deter-89

ministic [10]. These conditions are difficult to satisfy for stochastic systems, especially90

This manuscript is for review purposes only.



SPARSE IDENTIFICATION FOR STOCHASTIC SYSTEMS 3

feedback control systems. Besides, it is not clear whether the estimates obtained by91

utilizing such an approach in sparse system identification still have the theoretical92

asymptotic properties.93

Thus, this paper sets out to investigate the non-convex Lγ(0 < γ < 1) regular-94

ization method in sparse identification problems of stochastic dynamic systems with95

general observation sequences and non-i.i.d noise. The main contributions of this96

paper are as follows:97

• This paper proposes a sparse parameter identification algorithm based on the Lγ98

(0< γ < 1) penalty and the residual sum of squares for stochastic sparse systems99

with non-i.i.d and non-stationary observation sequences and non-i.i.d noise. This100

algorithm yields significantly better performance in terms of sparsity induction and101

efficiency compared to the convex penalty. In addition, the theoretical properties102

of this algorithm are established. Specifically, the almost sure convergence of the103

estimates is proven. Besides, the set convergence in probability is shown, i.e., the104

probability that the proposed algorithm correctly selects the non-zero elements of105

the unknown sparse parameter vector converges to one. Moreover, the asymptotic106

normality of the parameter estimates is obtained. These results incorporate the107

results of bridge estimate [18] and do not require additional strong irrepresentable108

conditions compared with LASSO [40].109

• In order to improve the performance of the Lγ regularization method, motivated by110

[42] and [43], a two-step algorithm based on the adaptively weighted Lγ(0 < γ ≤ 1)111

penalty and the residual sum of squares is proposed. For the case of non-i.i.d112

and non-stationary observation sequences and non- i.i.d noise, not only is almost113

sure parameter convergence established, but also almost sure set convergence is114

achieved, i.e., this algorithm correctly selects the non-zero elements of the unknown115

sparse parameter vector with probability one using a finite number of observations.116

Moreover, this algorithm is more efficient in sparsity induction than the adaptive117

LASSO and the algorithm in [42] and covers their results when γ = 1.118

• The proposed sparse identification algorithms in this paper are applied to two kinds119

of typical scenes in stochastic sparse systems with non-i.i.d observation sequences.120

Specifically, the proposed algorithms can efficiently select the contributing basis121

functions out for the Nonlinear AutoRegressive models with eXogenous variables122

(NARX). Furthermore, the proposed algorithm is able to accurately reconstruct123

the sparse parameters of the linear feedback control systems with non-i.i.d and124

non-stationary observation sequences and non-i.i.d noise.125

The rest of this paper is organized as follows: Section 2 gives the problem formu-126

lation. Section 3 proposes the Lγ(0 < γ < 1) regularization algorithm, establishes its127

theoretical results and compares it with related works. Section 4 gives an adaptively128

weighted two-step algorithm and investigates its properties. In Section 5, the pro-129

posed algorithm is applied to accomplish the structure selection of the NARX model130

and the sparse identification of the linear feedback control systems. In Section 6,131

three typical simulation examples are given to illustrate the algorithms’ performance.132

And in Section 7, some concluding remarks and further works are provided.133

Notation: Let (Ω,F ,P) be the probability space, ω ∈ Ω be the sample points,134

and E(·) be the expectation operator. ∥ · ∥1 and ∥ · ∥ denote 1-norm and 2-norm for135

vectors or matrices, respectively. By R and N+, we denote the sets of real numbers136

and positive integers, respectively. Ip represents a unit matrix of order p and 0p =137

[0, ..., 0]T ∈ Rp. Moreover, sign(·) is defined as sign(x) = 1, when x ≥ 0, and sign(x) =138

−1, when x < 0, vec(xj)|qj=1 means [x1, x2, . . . , xq]
T , and for a set A, by Ac, we139

denote the complement of A. For any two positive sequences {ak}k≥1 and {bk}k≥1,140
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ak = O(bk) means there are c > 0 and k0 ∈ N+ such that ak ≤ cbk for all k ≥ k0;141

ak = o(bk) means ak/bk → 0 as k → ∞. For two random sequences {xk} and {yk},142

we give the following two frequently-used definitions in this paper143

• xk = Op(yk) means that for any ϵ > 0, there is a finite M > 0 and a finite N > 0144

such that P {|xk| ≥ M |yk|} < ϵ for all k ≥ N ;145

• xk = op(yk) means xk/yk
P−→ 0 as k → ∞, where

P−→ means convergence in146

probability.147

2. Problem formulation. Consider the stochastic sparse system148

(2.1) yk+1 = θTφk + wk+1, k ≥ 0,149

where θ = [θ(1), . . . , θ(p)]T ∈ Rp is the unknown p-dimensional parameter vector150

containing many zero values, φk ∈ Rp consisting of possibly current and past inputs151

and outputs, is the stochastic regressor vector, yk+1 and wk+1 are the system output152

and noise, respectively. Denote the zero elements set of the unknown parameter θ by153

A∗ = {j : θ(j) = 0, j ∈ {1, . . . , p}}. Suppose that there are q non-zero elements in154

the vector θ. Without loss of generality, we assume that θ(j) = 0 for j = q+1, . . . , p.155

Problem. The identification problem of the stochastic sparse system is to infer156

the zero elements A∗ and to estimate the non-zero elements of the unknown parameter157

vector θ by using the observed data {yk+1, φk}nk=1.158

Before giving the sparse identification algorithm, the following assumptions are159

introduced.160

Assumptions. Denote the family of the σ-algebras {Fk} as

Fk = σ {φ0, . . . , φk, w1, . . . , wk} , k ≥ 1,

the maximum and minimum eigenvalues of
∑n

k=1φkφ
T
k as λmax(n) and λmin(n), re-161

spectively, and the maximum eigenvalue of E
∑n

k=1 φkφ
T
k as λE,max(n).162

(A1) The noise {wk,Fk}k≥1 is a martingale difference sequence and there is δ > 0163

such that supk E
[
|wk+1|2+δ | Fk

]
< ∞, a.s.164

(A2) (a) For the maximal and minimal eigenvalues of
∑n

k=1 φkφ
T
k , it holds165

log λmax(n)
λmin(n)

−−−−→
n→∞

0 a.s.

(b) For each n, there is a positive number dn such that166

dnλmin(n)
−1 = Op(1) and

√
λE,max(n)

dn
−−−−→
n→∞

0.

Remark 2.1. In Assumption (A1), a sequence of martingale differences is broader167

than a sequence of independent variables, which implies a much milder restriction168

on sequence memory than independence and allows wk+1 to depend on Fk. Many169

random variables, such as Gaussian random variables, uniformly distributed random170

variables, and so on, all satisfy this assumption. Assumptions (A2) is about the171

system observation sequences. Assumption (A2)(a) is the classical weakest strong172

convergence condition for LS [22].173

3. Lγ regularization algorithm and its properties. This section constructs174

a sparse identification algorithm based on Lγ(0 < γ < 1) regularization and gives the175

corresponding theoretical properties.176
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3.1. Lγ regularization algorithm. We start by giving the objective function177

based on Lγ penalty with 0 < γ < 1 and residual sum of squares:178

(3.1) Jn(β) =

n∑
k=1

(
yk+1 − βTφk

)2
+ λn

p∑
l=1

|β(l)|γ ,179

where λn is a penalty parameter and β=[β(1),. . . ,β(p)]T .180

Assumption. We first give the following assumption about the parameter λn.181

(A3) The penalty parameter {λn} of (3.1) satisfies that182

(a) λn

λmin(n)
−−−−→
n→∞

0, a.s., (b) λn

λE,max(n)1/2
−−−−→
n→∞

0, (c)
λnd

2−γ
n

λE,max(n)
2− 1

2
γ
−−−−→
n→∞

∞.183

Remark 3.1. Assumptions (A3) is about the penalty parameter λn. It is able to184

be satisfied and cover the classical persistent excitation condition as a special case,185

i.e., C1n ≤ λmin(n) ≤ λmax(n) ≤ C2n for some constants C1 and C2. Specifically,186

dn in (A2)(b) can be n and for any given 0 < γ < 1, λn can be chosen as nα with187
1
2γ < α < 1

2 to meet Assumption (A3).188

Algorithm. The sparse identification algorithm based on Lγ penalty is designed189

in Algorithm 3.1. This algorithm provides a method for combining variable selection190

and parameter estimation in a single step.

Algorithm 3.1 Lγ regularization.

Step 0 (Initialization). For given 0 < γ < 1, choose a positive sequence {λn}n≥1

satisfying (A3).
Step 1 (Sparse Optimization with Lγ penalty) With γ and λn, optimize the
objective function

(3.2) Jn(β) =

n∑
k=1

(
yk+1 − βTφk

)2
+ λn

p∑
l=1

|β(l)|γ ,

and obtain

βn = [βn(1), . . . , βn(p)]
T
= argmin

β
Jn(β),(3.3)

A∗
n = {j : βn(j) = 0, j ∈ {1, . . . , p}} .(3.4)

191

Remark 3.2. We now discuss the feasibility of (3.3). First, the global minimum192

point of non-convex function Jn(β) exists (not infinity). This is because Jn(β) is193

continuous, there exists a minimum point on any compact set; and since ∥β∥ → ∞,194

Jn(β) → ∞, the point that minimizes Jn(β) must be finite. Thus, (3.3) is a well-195

defined estimator. Second, we present the computation methods of (3.3). It is worth196

noting that the standard gradient-based method fails to solve this problem, because197

the penalty objective function Jn(β) is non-differentiable when β has zero compo-198

nents. While, a large number of approximate algorithms and nonconvex optimization199

solvers have emerged to solve this problem. For instance, [37] proposed an iterative200

half thresholding algorithm for fast solution of L1/2 regularization, and [20] and [29]201

designed solving algorithms by approximating the Lγ penalty with a function that202

has finite gradient at zero. In addition, genetic algorithms, particle swarm algorithms,203

simulated annealing algorithms, etc. can be used to solve non-convex optimization204
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6 J. GUO, Y. WANG, Y. ZHAO AND J. F. ZHANG

problems as well as solvers such as IPOPT [35]. However, none of the above methods205

provide sufficient theoretical support. Thus, the focus of this paper is not on the206

discussion of the solution method of (3.3), but on the properties of its solution.207

Remark 3.3. The currently existing papers on the sparse identification of Lγ pen-208

alty either lack theory, as in the papers [11, 29, 36], or discuss its properties only under209

the i.i.d and stationary condition, as in the papers [9, 18, 38]. However, in the fields of210

system and control, the regressor φk is generally non-stationary and non-independent211

because any real feedback controller depends essentially on the system output and212

hence the driven noise [17]. The main point of interest in this paper is whether the213

estimates (3.3) and (3.4) remain parameter convergence, set convergence and asymp-214

totically normality under non-stationary and non-independent conditions.215

Remark 3.4. [42] proved the convergence of L1 penalty with adaptive weights216

under non-stationary and non-independent assumption. While, Lγ penalty is more217

efficient in sparsity induction than L1 penalty. We give an example to explain. Con-218

sider the Auto Regression with eXtra input (ARX) system: yk+1 = θ1yk+θ2uk+wk+1219

with the true parameters θ1 = 1 and θ2 = 0. Let β = [β1, β2]
T . By Lagrange’s multi-220

plier method, the regularized LS problem (3.3) is equivalent to solving:221

min
β

J(β) =

n∑
k=1

(yk+1 − β1yk − β2uk)
2

s.t. |β1|γ + |β2|γ ≤ s,222

for some s > 0. Fig. 1 shows the objective function equivalence graphs of L1 and223

L1/2 penalties. The constraint region of the L1 penalty is a square after rotation, and224

the constraint region of the L1/2 penalty is a graph concave inward. The solution to225

this problem occurs when the contour J(β) is first tangent to the constraint region.226

It can be seen that the solutions of both L1 and L1/2 penalties may appear at the227

corners, which leads to a sparse solution. This geometrically demonstrates the spar-228

sity of Lγ(0 < γ ≤ 1) regularization. Moreover, the solution of the L1/2 regularized229

LS problem is more likely to appear at the corners, which implies that the solution of230

the L1/2 regularized LS problem is sparser than L1.
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Fig. 1. L1 penalty v.s. L1/2 penalty

231

Remark 3.5. Now we give a way of choosing penalty parameter λn in Algorithm232

3.1 for general cases. If
λE,max(n)

3/2−γ/2

d2−γ
n

−−−−→
n→∞

0 and

√
λE,max(n)

λmin(n)
= O(1) a.s., then,233

for any 0 < β < 1, λn =
λE,max(n)

( 3
2
− 1

2
γ)β+1/2

d
(2−γ)β
n

satisfies Assumption (A3).234

3.2. Theoretical properties. This section will give the theoretical properties235

of Algorithm 3.1. To prove these properties, we first give the following proposition.236
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Proposition 3.6. [23] For the system (2.1), if Assumptions (A1) and (A2) hold,237

then
∥∥∥(∑n

k=1 φkφ
T
k

)− 1
2
∑n

k=1 φkwk+1

∥∥∥ = O
(√

log λmax(n)
)
, a.s.238

For the estimate βn and A∗
n generated by Algorithm 3.1, the following theorem239

shows the almost sure convergence of the estimates.240

Theorem 3.7. Under Assumptions (A1), (A2)(a) and (A3)(a), the estimate given241

by Algorithm 3.1 is almost surely convergent, i.e., limn→∞ βn = θ, a.s.242

Proof. Noting that βn is the minimizer of Jn(β) in Algorithm 3.1, we have243

Jn(βn) ≤ Jn(θ). Since λn > 0, |βn(j)|γ ≥ 0, by (3.2) and a direct calculation,244

we have245

λn

p∑
j=1

|θ(j)|γ≥
n∑

i=1

(
yi+1−φT

i βn

)2− n∑
i=1

(
yi+1 − φT

i θ
)2

246

=(βn − θ)T
n∑

i=1

(φiφ
T
i )(βn−θ)+2

n∑
i=1

φT
i (θ−βn)wi+1.(3.5)247

Let Pn =
∑n

i=1 φiφ
T
i , δn = P

1/2
n (βn − θ) and Qn =

(∑n
k=1 φkφ

T
k

)− 1
2
∑n

k=1 φkwk+1.248

Then, (3.5) becomes249

(βn − θ)T
n∑

i=1

(φiφ
T
i )(βn − θ) + 2

n∑
i=1

φT
i (θ − βn)wi+1250

= δTn δn − 2

[
(

n∑
i=1

φiφ
T
i )

−1/2
n∑

i=1

φiwi+1

]T
δn = δTn δn − 2QT

n δn.(3.6)251

From (3.5) and (3.6) it follows that δTn δn−2QT
n δn−λn

∑p
j=1 |θ(j)|

γ ≤ 0, which implies252

∥δn −Qn∥2 − ∥Qn∥2 − λn

∑p
j=1 |θ(j)|

γ ≤ 0. Hence, we have253

∥δn −Qn∥ ≤

√√√√∥Qn∥2 + λn

p∑
j=1

|θ(j)|γ

≤

√√√√∥Qn∥2 + λn

p∑
j=1

|θ(j)|γ + 2∥Qn∥(λn

p∑
j=1

|θ(j)|γ)1/2 = ∥Qn∥+ (λn

p∑
j=1

|θ(j)|γ)1/2.

Then, by the triangular inequality we have ∥δn∥≤∥δn−Qn∥+∥Qn∥ ≤ 2∥Qn∥+254

(λn

∑p
j=1|θ(j)|

γ
)1/2. Noting Proposition 3.6 and λn

∑p
j=1 |θ(j)|

γ
= O(λn), it follows255

that ∥βn − θ∥ = O
(√

log λmax(n)
λmin(n)

+
√

λn

λmin(n)

)
a.s. By Assumptions (A2)(a) and256

(A3)(a), the proof is completed.257

Next, we discuss the set convergence in probability of the estimates, starting258

with the following lemma to illustrate the convergence properties in probability of the259

estimation error.260

Lemma 3.8. If Assumptions (A1), (A2) and (A3)(a)-(b) hold, then261

(3.7) ∥βn − θ∥ = Op

(√
qλE,max(n)

dn

)
.262
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Proof. To prove ∥βn−θ∥ = Op(
√
qλE,max(n)/dn), it is sufficient to prove that for263

any ϵ1 > 0, there exists a finite M̃ > 0 and N such that for any n > N , P(∥βn−θ∥>264

M̃
√
qλE,max(n)/dn)≤ ϵ1. Let hn = dn/

√
qλE,max(n). By the fact that ∀ϵ > 0,265

P
(
hn ∥βn−θ∥>M̃

)
≤P (∥βn−θ∥≥ϵ/2)+P

(
M̃/hn < ∥βn − θ∥ < ϵ/2

)
,(3.8)266

we divide the proof into two steps: one is to prove P(∥βn−θ∥ ≥ ϵ/2) ≤ ϵ1
3 and the267

other is to prove P
(
M̃/hn < ∥βn − θ∥ < ϵ/2

)
≤ 2ϵ1

3 . Specifics are as follows.268

Step 1: By Theorem 3.7, the probability P (∥βn − θ∥ ≥ ϵ/2) converges to zero,269

which means for any given ϵ1 > 0, there is a finite N1 ∈ N+ such that for all n > N1,270

(3.9) P (∥βn − θ∥ ≥ ϵ/2) ≤ ϵ1/3.271

Step 2: This step is to prove P
(
M̃/hn < ∥βn − θ∥ < ϵ/2

)
≤ 2ϵ1

3 . For each n ∈272

N+, denote Sj,n =
{
β : 2j−1 < hn ∥β − θ∥ < 2j

}
for j ∈ Z. By Assumption (A2)(b),273

there is a finite M1 > 0 and a finite N2 ∈ N+ such that for all n > N2,274

(3.10) P(λmin(n)≤M1dn)=P(dnλmin(n)
−1≥M−1

1 )≤ϵ1
3
.275

Denote An = {ω : λmin(n) ≤ M1dn}. By the definition of Sj,n and (3.10), we have276

P
(
2M/hn < ∥βn − θ∥ < ϵ/2

)
277

≤ P
(
{ω : βn ∈ Sj,n, ∀j ≥ M + 1, 2j+1 ≤ ϵhn} ∩Ac

n

)
+ P(An)278

≤
∑

j≥M+1,2j+1≤ϵhn

P({ω : βn ∈ Sj,n} ∩Ac
n)+

ϵ1
3
.(3.11)279

Since βn is the minimum of Jn(β), for any set A containing the point βn, we have280

inf
β∈A

(Jn(β)− Jn (θ)) ≤ 0, which implies281

(3.12) {ω : βn ∈ A} ⊂ {ω : inf
β∈A

(Jn(β)− Jn (θ)) ≤ 0}.282

Thus, by (3.12) and (3.11) we have283

P
(
2M/hn < ∥βn − θ∥ < ϵ/2

)
284

≤ ϵ1
3

+
∑

j≥M,2j≤ϵhn

P

(
{ inf
β∈Sj,n

(Jn(β)− Jn (θ)) ≤ 0} ∩Ac
n

)
.(3.13)285

Next we consider the right hand of (3.13). Let β = [β(1), . . . , β(p)]T ∈ Sj,n. Since286

|β(j)|γ > 0 and θ(j) = 0 for j = q, q + 1, . . . , p, similar to (3.5), we have287

Jn(β)− Jn (θ) = (β − θ)T
n∑

i=1

(φiφ
T
i )(β − θ)288

+2

n∑
i=1

φT
i (θ − β)wi+1 + λn

q∑
j=1

[|β(j)|γ − |θ(j)|γ ] .(3.14)289

For the first term on the right hand of (3.14), by noting β ∈ Sj,n and (3.10), for any290

ω ∈ Ac
n, it follows that291

(β − θ)T
n∑

i=1

(φiφ
T
i )(β − θ)≥ λmin(n)∥β − θ∥2292

≥ λmin(n)2
2j−2h−2

n ≥ M1dn2
2j−2h−2

n .(3.15)293
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For the third term on the right hand of (3.14), by the mean value theorem, there
exists ξj between β(j) and θ(j) such that

λn

q∑
j=1

||β(j)|γ − |θ(j)|γ | = λnγ

q∑
j=1

|ξj |γ−1 |β(j)− θ(j)| .

Since ∥β − θ∥ < ϵ/2, there is some constant C1 > 0 such that |ξj |γ−1 < C1. Thus,294

λn

q∑
j=1

||β(j)|γ − |θ(j)|γ | ≤ C1λnγ

q∑
j=1

|β(j)− θ(j)|295

≤ C1λnγ
√
q∥β − θ∥ ≤ C1λnγ

√
q2jh−1

n .(3.16)296

Then, it follows from (3.16) that297

λn

q∑
j=1

[|β(j)|γ − |θ(j)|γ ] ≥ −C1λnγ
√
q2jh−1

n .(3.17)298

Hence, by (3.14), (3.15) and (3.17), we have for any ω ∈ Ac
n,299

Jn(β)−Jn (θ)≥M1dn2
2j−2h−2

n −C1λnγ2
jh−1

n − sup
β∈Sj,n

2

∣∣∣∣∣
n∑

i=1

φT
i (θ−β)wi+1

∣∣∣∣∣ .(3.18)300

When inf
β∈Sj,n

(Jn(β)− Jn (θ)) ≤ 0, by (3.18), for any ω ∈ Ac
n, the following inequality301

holds302

sup
β∈Sj,n

2

∣∣∣∣∣
n∑

i=1

φT
i (θ − β)wi+1

∣∣∣∣∣ ≥ M1dn2
2j−2h−2

n − C1λnγ
√
q2jh−1

n .(3.19)303

By Assumption (A3)(b), we have
λn

√
q2jh−1

n

dn22j−2h−2
n

= λn

2j−2
√

λE,max(n)
−−−−→
n→∞

0. Then, it304

follows that M1dn2
2j−2h−2

n > C1λnγ
√
q2jh−1

n for all n > N3 with N3 being some305

positive integer. Therefore, by (3.19) and Markov inequality, we have306

P

(
{ inf
β∈Sj,n

(Jn(β)− Jn (θ)) ≤ 0} ∩Ac
n

)
307

≤ P

(
sup

β∈Sj,n

2

∣∣∣∣∣
n∑

i=1

φT
i (θ − β)wi+1

∣∣∣∣∣ ≥ M1dn2
2j−2h−2

n − C1λnγ
√
q2jh−1

n

)
308

≤
E sup

β∈Sj,n

2

∣∣∣∣ n∑
i=1

φT
i (θ − β)wi+1

∣∣∣∣
M1dn22j−2h−2

n − C1λnγ
√
q2jh−1

n

.(3.20)309

In addition, by Assumption (A1), we further assume that E
(
w2

k+1|Fk

)
= σ2

k ≤ σ̄2310

with σ̄ being some constant. Then, by the definition of Sj,n, Jensen’s inequality, and311

Cauchy-Schwarz inequality, we have312

E sup
β∈Sj,n

2

∣∣∣∣∣
n∑

i=1

φT
i (θ − β)wi+1

∣∣∣∣∣ ≤ 2

√√√√E sup
β∈Sj,n

∥β − θ∥2
∥∥∥∥∥

n∑
i=1

φT
i wi+1

∥∥∥∥∥
2

313

≤ 2j+1h−1
n

√√√√E

[
n∑

i=1

φT
i wi+1

n∑
i=1

φiwi+1

]
.(3.21)314
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Noting Assumption (A1), we have315

E

[
n∑

i=1

φT
i wi+1

n∑
i=1

φiwi+1

]
= E

[
n∑

i=1

φT
i φiw

2
i+1

]
= E

[
n∑

i=1

E(
[
φT
i φiw

2
i+1

]
| Fi)

]
316

≤ σ̄2E

n∑
i=1

φT
i φi ≤ σ̄2tr

(
E

n∑
i=1

φiφ
T
i

)
≤ σ̄2pλE,max(n).(3.22)317

Therefore, from (3.20) and (3.22) it follows that318

P

(
{ inf
β∈Sj,n

(Jn(β)− Jn (θ)) ≤ 0} ∩Ac
n

)
319

≤
2j+1σ̄

√
ph−1

n λE,max(n)
1/2

M1dn22j−2h−2
n − C1λnγ

√
q2jh−1

n

≤ 2σ̄

M12j−2 − C1λnγ
λE,max(n)1/2

.320

By Assumption (A3)(b), there is a finite N4 ∈ N+ such that for all n > N4,321

P

(
{ inf
β∈Sj,n

(Jn(β)− Jn (θ)) ≤ 0} ∩Ac
n

)
≤ σ̄

M12j−4
,322

which leads to323 ∑
j≥M,2j≤ϵhn

P

(
{ inf
β∈Sj,n

(Jn(β)−Jn (θ))≤0} ∩Ac
n

)
≤
∑
j≥M

σ̄

M12j−4
≤ σ̄

M1
2−(M−5).(3.23)324

Therefore, for the given ϵ1, there is a finite M2 and N5 such that for all n > N5,325 ∑
j≥M2,2j≤ϵhn

P

(
{ inf
β∈Sj,n

(Jn(β)−Jn (θ))≤0}∩Ac
n

)
≤ ϵ1

3
.(3.24)326

Thus, from (3.8), (3.9), (3.13) and (3.24), letting M̃ = 2M2 and N=max{N1, . . . , N5},327

we have for all n > N , P
(
hn ∥βn − θ∥ > M̃

)
≤ ϵ1. This completes the proof.328

Remark 3.9. From Equation (3.7), it can be obtained that the smaller the num-329

ber of non-zero elements of the parameter vector θ, the faster the convergence rate330

and thus the better the identification performance. This is further verified by the331

simulation Example 1 in Section 6.332

Based on Lemma 3.8, we give the following theorem demonstrating the set con-333

vergence in probability. Different from Theorem 3.7, the following theorem further334

states that the probability that the proposed algorithm correctly selects the non-zero335

elements of the unknown sparse parameter vector converges to one.336

Theorem 3.10. Let βn = (βT
1n, β

T
2n)

T with β1n ∈ Rq and β2n ∈ Rp−q being337

the vectors composed by the first q elements and the last p − q elements of βn, and338

θ = (θT10, 0
T
p−q)

T with θ10 ∈ Rq. If Assumptions (A1)-(A3) hold, then we have the339

set convergence of the estimates with probability tending to one, i.e., lim
n→∞

P (β2n =340

0p−q) = 1.341

Proof. Let tn =

√
λE,max(n)

dn
. Denote the estimate βn = (βT

1n, β
T
2n)

T as β1n =342

θ10 + tnu1n, β2n = tnu2n, where u1n ∈ Rq and u2n ∈ Rp−q. In addition, denote343

n∑
k=1

φkφ
T
k =

[
Φ

(11)
n Φ

(12)
n

Φ
(21)
n Φ

(22)
n

]
and φk =

[
φ
(1)
k

φ
(2)
k

]
,(3.25)344
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where Φ
(11)
n ∈ Rq×q, φ

(q)
k ∈ Rd and others are with compatible dimensions. For any345

given C > 0, define346

Bn = {ω : βn ∈ {β : ∥β − θ∥ ≤ tnC}} , Dn = {ω : β2n = 0} .(3.26)347

Then, by (3.26) we have ∥u1n∥ ≤ C and ∥u2n∥ ≤ C for all ω ∈ Bn. Next, we prove348

that for any given ϵ > 0, there is N ∈ N+ such that P(Dn) ≥ 1 − ϵ for all n > N .349

In the following, we consider the estimate sequence {βn}n≥1 on a fixed sample path350

ω ∈ Bn. Direct calculation for (3.2) leads to351

Jn(βn) =

n∑
i=1

w2
i+1 + (βn − θ)T

n∑
i=1

(φiφ
T
i )(βn − θ)352

+ 2

n∑
i=1

φT
i (θ − βn)wi+1 + λn

p∑
j=1

|βn(j)|γ .353

Then, we can obtain354

Jn(θ10 + tnu1n, tnu2n)− Jn(θ10 + tnu1n, 0)355

= t2n

n∑
i=1

(
φ
(2)T
i u2n

)2
+ 2t2n

n∑
i=1

(
φ
(1)T
i u1n

)(
φ
(2)T
i u2n

)
356

−2tn

n∑
i=1

wi+1

(
φ
(2)T

i u2n

)
+ λnt

γ
n

p−q∑
j=1

|u2n(j)|γ .(3.27)357

For the first two terms on the right hand of (3.27), we have358

t2n

n∑
i=1

(
φ
(2)T
i u2n

)2
+ 2t2n

n∑
i=1

(
φ
(1)T
i u1n

)(
φ
(2)T
i u2n

)
(3.28)359

≥ t2n

n∑
i=1

(
φ
(2)T
i u2n

)
2−t2n

n∑
i=1

[(
φ
(1)T
i u1n

)
2+
(
φ
(2)T
i u2n

)
2
]
=−t2n

n∑
i=1

(
φ
(1)T
i u1

)2
.360

By Markov inequality and noting that λmax{EΦ
(11)
n } ≤ λE,max(n), for the above given361

ϵ, letting M1 = 3
ϵ , we have362

P

(
t2n

n∑
i=1

(
φ
(1)T
i u1n

)2
≥M1λE,max(n)t

2
nC

2

)
≤

ϵE

(
t2n

n∑
i=1

(
φ
(1)T
i u1n

)2)
3λE,max(n)t2nC

2
≤ϵ/3.(3.29)363

Hence, it follows P(Ec
n) ≤ ϵ/3, where En is denoted as364

(3.30) En =

{
ω : t2n

n∑
i=1

(
φ
(1)T
i u1

)2
≤ M1t

2
nC

2λE,max(n)

}
.365

For the third term on the right hand of (3.27), similar to (3.21) and (3.22), noting366

that λmax{EΦ
(22)
n } ≤ λE,max(n) and ∥u2n∥ ≤ C, we can get367

E

∣∣∣∣∣
n∑

i=1

wi+1

(
φ
(2)T
i u2n

)∣∣∣∣∣ ≤
E ∣∣∣∣∣

n∑
i=1

wi+1

(
φ
(2)T
i u2n

)∣∣∣∣∣
2
1/2

368

≤ Cσ̄λmax{EΦ(22)
n }1/2 ≤ Cσ̄

√
λE,max(n),(3.31)369
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where E
(
w2

k+1|Fk

)
≤ σ̄2 with σ̄ being some constant by Assumption (A1). By Markov370

inequality, for the above given ϵ, letting M2 = 3Cσ̄
ϵ , it follows from (3.31) that371

P

(∣∣∣∣∣
n∑

i=1

wi+1

(
φ
(2)T
i u2n

)∣∣∣∣∣≥M2

√
λE,max(n)

)
≤
E
∣∣∣∑n

i=1 wi+1

(
φ
(2)T
i u2n

)∣∣∣
M2

√
λE,max(n)

≤ϵ/3.(3.32)372

Denote373

Fn =

{
ω : −

n∑
i=1

wi+1

(
φ
(2)T

i u2n

)
≥ −M2λ

1/2
E,max(n)

}
.(3.33)374

Then, from (3.32) it follows P(F c
n) ≤ ϵ/3. For the last term on the right hand of375

(3.27), noting that
[∑p−q

j=1 |u2n(j)|γ
]2/γ

≥
∑p−q

j=1 |u2n(j)|2 = ∥u2n∥2 , we have376

(3.34) λnt
γ
n

p−q∑
j=1

|u2n(j)|γ ≥ ∥u2n∥γλnt
γ
n.377

For all ω ∈ En ∩ Fn, from (3.28), (3.30), (3.33) and (3.34), we have378

Jn(θ10 + tnu1n, tnu2n)− Jn(θ10 + tnu1n, 0) ≥379

−M1t
2
nC

2λE,max(n)+∥u2n∥γλnt
γ
n−2tnM2λ

1/2
E,max(n).(3.35)380

By Assumption (A3)(c), and noting that λE,max(n)/dn ↛ 0, we have381

λnt
γ
n

t2nλE,max(n)
=

λnd
2−γ
n

λE,max(n)2−
1
2γ

−−−−→
n→∞

∞,382

λnt
γ
n

tn
√
λE,max(n)

=
λnd

2−γ
n

λE,max(n)2−
1
2γ

λE,max(n)

dn
−−−−→
n→∞

∞.383

Therefore, from (3.35), if ∥u2n∥ > 0, then there is a finite Ñ ∈ N+ such that Jn(βn)−384

Jn(θ10 + tnu1n, 0) > 0, ∀n > Ñ, which contradicts βn = argmin
β

Jn(β). Thus, for any385

ω ∈ En ∩ Fn, there is a finite N1 such that β2n = tnu2n = 0, ∀n > N1. Therefore,386

from (3.26) it follows Bn ∩ En ∩ Fn ⊂ Dn ∩ En ∩ Fn, ∀n > N1. In addition, by387

Lemma 3.8, for the above given ϵ, there is an N2 ∈ N+ such that P (Bc
n) ≤ ϵ/3 for388

all n > N2. Hence, combing the results above (3.30) and below (3.33), and letting389

N = max{N1, N2}, we have that for all n > N ,390

P (β2n = 0) = P (Dn) ≥ P (Dn ∩ En ∩ Fn) = 1− P (Dc
n ∪ Ec

n ∪ F c
n)391

≥ 1− P (Bc
n)− P (Ec

n)− P (F c
n) ≥ 1− ϵ.392

This completes the proof.393

Using the central limit theorem, we immediately give the asymptotic normality394

of the estimated non-zero parameters below.395

Theorem 3.11. Assume for each n that there is a non-random positive definite396

symmetric matrix Rn such that397

R−1
n Φ(11)

n
P−→ Ip, max

1≤k≤n
∥R−1/2

n φ
(1)
k ∥ P−→ 0, and(3.36)398

lim
k→∞

E(w2
k+1 |Fk) = σ2, a.s. for some constant σ,(3.37)399
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where φ
(1)
k and Φ

(11)
n are defined in (3.25). Denote the estimate βn = (βT

1n, β
T
2n)

T400

and θ = [θT10, 0
T
p−q]

T . For any non-random αn ∈ Rq satisfying ∥αn∥ ≤ 1, let s2n =401

σ2αT
nR

−1
n αn. If Assumptions (A1)-(A3) hold, then402

s−1
n αT

n (β1n − θ10) = s−1
n

n∑
k=1

αT
n

(
Φ(11)

n

)−1

φ
(1)
k wk+1 + op(1)

d→ N(0, 1),(3.38)403

where
d→ denotes convergence in distribution and N(0, 1) denotes the standard normal404

distribution.405

Remark 3.12. The existence of a non-random matrix Rn satisfying conditions406

(3.36) in Theorem 3.11 can be regarded as an stability assumption of the matrix407

Φ
(11)
n . Moreover, this assumption is necessary for asymptotic normality and one can408

refer to Example 3 in [21] in which asymptotic normality fails to hold in the absence of409

(3.36). Besides, Rn can be selected as Φ
(11)
n if {φ(1)

k } is determined sequence; Rn can410

be selected as nEφ
(1)
n φ

(1)T
n if φ

(1)
n φ

(1)T
n is a stationary and ergodic random sequence411

with positive covariance matrix [39].412

Proof. Denote Jn(β) in (3.2) as Jn(β) = Jn(β1, β2) with β1 ∈ Rq. By Theorem413

3.7, we have ∥βn − θ∥ −−−−→
n→∞

0 a.s. Since each component of θ10 is not equal to zero,414

when n is sufficiently large, each element of β1n stays away from zero. Noting that415

the estimate βn = (βT
1n, β

T
2n)

T is the minimum of Jn(β), when n is sufficiently large,416

we have ∂
∂β1

Jn(β1n, β2n) = 0, which implies417

−2

n∑
k=1

(
yk+1−βT

1nφ
(1)
k −βT

2nφ
(2)
k

)
φ
(1)
k +λnγvec

(
sign(β1n(j))|β1n(j)|γ−1

) ∣∣q
j=1

=0.(3.39)418

From (2.1) and noting that θ = [θT10, 01×(p−q)]
T , it follows yk+1 − θT10φ

(1)
k = wk+1.419

Then, by (3.39) we get420

n∑
k=1

φ
(1)
k φ

(1)T
k (β1n − θ10)(3.40)421

= −
n∑

k=1

βT
2nφ

(2)
k φ

(1)
k +

n∑
k=1

φ
(1)
k wk+1 −

1

2
λnγvec

(
sign(β1n(j))|β1n(j)|γ−1

) ∣∣∣∣q
j=1

.422

Thus, direct calculation from (3.40) leads to423

s−1
n αT

n (β1n−θ10) = −s−1
n αT

n

(
Φ(11)

n

)−1 n∑
k=1

βT
2nφ

(2)
k φ

(1)
k + s−1

n

n∑
k=1

αT
n

(
Φ(11)

n

)−1

φ
(1)
k wk+1424

−1

2
λnγs

−1
n αT

n

(
Φ(11)

n

)
−1vec

(
sign(β1n(j))|β1n(j)|γ−1

) ∣∣∣∣q
j=1

.(3.41)425

For the first term on the right hand of (3.41), by Theorem 3.10 that limn→∞ P (β2n =426

0) = 1, we have427

(3.42) lim
n→∞

P

(
s−1
n αT

n

(
Φ(11)

n

)
−1

n∑
k=1

βT
2nφ

(2)
k φ

(1)
k =0

)
=1.428
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For the last term on the right hand of (3.41), since β1n → θ10, there is a constant C429

such that |β1n(j)| ≤ C for j = 1, . . . , q. By Assumption (A3)(a), we have430 ∣∣∣∣∣λnα
T
n

(
Φ(11)

n

)−1

vec
(
sign(β1n(j))|β1n(j)|γ−1

) ∣∣∣∣q
j=1

∣∣∣∣∣431

≤ λnλmin(n)
−1q1/2Cγ−1 = op(1),(3.43)432

which together with (3.41) and (3.42) gives433

s−1
n αT

n (β1n − θ10) = s−1
n

n∑
k=1

αT
n

(
Φ(11)

n

)−1

φ
(1)
k wk+1 + op(1).(3.44)434

In view of (3.36) and (3.44), to prove (3.38), we need only to show that435

(3.45) s−1
n

n∑
k=1

αT
nR

−1
n φ

(1)
k wk+1

d→ N(0, 1).436

Similar to [21], the desired conclusion (3.45) can be obtained by making use of a437

martingale central limit theorem of [7].438

3.3. Comparison of Algorithm 3.1 with related methods. In this part,439

we compare the sparse identification Algorithm 3.1 with Information Criterion-based440

variable selection [1, 32], LASSO [33], and bridge estimate [18].441

Comparison with variable selection and order estimation based on information442

criterion. The variable selection problem aims to select a subset of relevant variables443

used in model construction. The usual approach is to select the optimal one from444

a set of reasonable models under some importance criteria, many of which contain445

measures of accuracy and the penalized term by the number of selected variables,446

for instance, AIC [1] and BIC [32] for stationary time series. Algorithm 3.1 in this447

paper not only fulfills the task of variable selection but also estimates the parameters448

corresponding to the selected variables. Moreover, compared with order estimation449

methods for stochastic systems such as control information criterion (CIC) [5, 15], the450

algorithm in this paper solves the problem as well, and furthermore, non-contributing451

variables within the order can also be selected out.452

Comparison with LASSO and bridge estimate. Compared with the LASSO, Al-
gorithm 3.1 does not require additional conditions; and compared with the bridge
estimate, Algorithm 3.1 can be applied to general observations. In a typical setup,
the sparsity problem can be described as follows [37]: Given a n× p matrix Ψn, and
a procedure of generating an observation such as

Y = Ψnθ +W

with Y = [y1, . . . , yn]
T , Ψn = [φ0, . . . , φn−1]

T and W = [w1, . . . , wn], we are asked to
recover θ from the observation Y such that θ is of the sparsest structure. The problem
can be solved by the following regularization method:

min
θ∈Rp

{
∥Y −Ψnθ∥2 + λn∥θ∥νν

}
,

where ν > 0 and ∥x∥ν is defined by ∥θ∥ν = ν
√∑p

i=1 |θ(i)|
ν
. The LASSO (for ν = 1),

the bridge estimate (for ν > 0), and the Algorithm 3.1 (for 0 < ν < 1) in this paper all
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fall into this category, but Ψn in Algorithm 3.1 can be stochastic, whereas the others
are deterministic. We then compare the application scope of these three algorithms.
For LASSO, denote

Φn =

n∑
k=1

φkφ
T
k =

[
Φ11

n Φ12
n

Φ21
n Φ22

n

]
with Φ11

n ∈ Rq×q and βn = (βT
1n, β

T
2n)

T . [40] gave sufficient conditions for the set
convergence in probability of the LASSO estimate: (a) 1

nΦn → Φ with Φ being a
positive definite matrix; (b) the following strong irrepresentable condition holds:∣∣∣Φ21

n

(
Φ11

n

)−1
sign (β1n)

∣∣∣ ≤ 1p−q − η,

with 1p−q being a (p− q)× 1 vector of 1’s, η > 0 and the inequality holding element-453

wise; and (c) λn is chosen as λn = nα with 1
2 < α < 1. Algorithm 3.1 of this paper454

can also reach set convergence while covering condition (a) as a special case without455

requiring the strong irrepresentable condition (b).456

For bridge estimate, the conditions for the consistency of the estimates given by457

[18] are: (a) 1
nΦn → Φ with Φ being a positive definite matrix; (b) λnn

−1/2 → 0458

and λ2
nn

−γ → 0. This result is consistent with the result of Algorithm 3.1 when459

C1n ≤ λmin(n) ≤ λmax(n) ≤ C2n for some constants C1 and C2. In addition, the460

theoretical results of Algorithm 3.1 go further and can be adapted to non-persistent461

excitation cases, in particular, the data series {φk, yk+1}k≥1 can be generated by462

feedback control where φk may be stochastic.463

4. Weighted Lγ regularization algorithm and its properties. LASSO is464

a popular technique for simultaneous estimation and variable selection. However,465

in some cases, LASSO is inconsistent for variable selection. [28] showed the conflict466

between the optimal prediction and consistent variable selection in LASSO. To address467

this issue, [43] proposed a new version of the LASSO, the adaptive LASSO, in which468

adaptive weights were used to penalize different parameters in the L1 penalty. [42]469

extended this result to general observation cases. Inspired by the improvement of the470

convergence properties of LASSO with this technique, in order to extend the scope471

of application and improve the performance of the Lγ penalty, in this section, we472

present a two-step algorithm with adaptively weighted Lγ(0 < γ ≤ 1) penalty term.473

The algorithm is more broadly applicable and has better convergence properties.474

4.1. Weighted Lγ regularization algorithm.475

Assumption. Given constants γ and µ satisfying 0 < γ ≤ 1 and µ > 0. To476

proceed, we first introduce the assumptions to be used for the theoretical analysis of477

the weighted Lγ regularization algorithm.478

(B1) For the maximal and minimal eigenvalues of
∑n

k=1 φkφ
T
k and the positive se-

quence {λn}n≥1, it holds,

(a)

(
log λmax(n)

λmin(n)

)1− γ
2 +

µ
2 λmax(n)

λn
−−−−→
n→∞

0 a.s.

(b)
log λmax(n)

µ
2

λmin(n)1−
γ
2 +

µ
2

λmax(n)

λ
γ
2
n

−−−−→
n→∞

0 a.s. (c)
log λmax(n)

1
2+

µ
2

λmin(n)
1
2−

γ
2 +

µ
2

λmax(n)
1
2

λ
1
2+

γ
2

n

−−−−→
n→∞

0 a.s.

The adaptive sparse identification algorithm is proposed in Algorithm 4.1.479
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Algorithm 4.1 Weighted Lγ regularization.

Step 0 (Initialization). For given 0 < γ ≤ 1 and µ > 0, choose a positive
sequence {λn}n≥1 satisfying Assumption (B1).
Step 1 (LS Estimation). Based on {yk+1, φk}nk=1, compute the estimator:

θn+1 =

(
n∑

k=1

φkφ
T
k

)−1( n∑
k=1

φkyk+1

)
.

Let θn+1 = [θn+1(1), . . . , θn+1(p)]
T
, and for 1 ≤ j ≤ p, define

θ̂n+1(j) = θn+1(j) + sign(θn+1(j))

√
log λmax(n)

λmin(n)
.

Step 2 (Sparse Optimization with Lγ penalty). With λn and θ̂n+1, optimize

the objective function Ĵn(β) =
∑n

k=1

(
yk+1 − βTφk

)2
+ λn

∑p
j=1

1

|θ̂n+1(j)|µ
|β(j)|γ

and obtain

β̂n =
[
β̂n(1), . . . , β̂n(p)

]T
= argmin

β
Ĵn(β)(4.1)

Â∗
n =

{
j = 1, . . . , p | β̂n(j) = 0

}
.(4.2)

Remark 4.1. We discuss the choice of λn in the Algorithm 4.1. If we as-480

sume λmax(n)
λmin(n)

(
log λmax(n)
λmin(n)

)µ/2
→ 0, a.s., then Assumption (B1) can be simplified to481

λn = o(λmin(n)) and λmax(n)
(
log λmax(n)
λmin(n)

)µ
2

=o(λn). Denote an = λmax(n)
(
log λmax(n)
λmin(n)

)µ
2

482

and bn = λmin(n). Then, λn can be chosen as λn = aηnb
1−η
n for any fixed η ∈ (0, 1) sat-483

isfying Assumption (B1). Specifically, by noting that an

bn
= λmax(n)

λmin(n)

(
log λmax(n)
λmin(n)

)µ/2
→484

0 a.s., it follows that λn

bn
=
(

an

bn

)η
→ 0, and an

λn
=
(

an

bn

)1−η

→ 0 a.s.485

4.2. Theoretical properties. Recall that the parameter vector is assumed θ =486

[θ(1), . . . , θ(q), θ(q + 1), . . . , θ(p)]T with θ(i) ̸= 0 for i = 1, . . . , q, and θ(j) = 0 for487

j = q+ 1, . . . , p. For the estimate β̂n and Â∗
n generated by Algorithm 4.1, the almost488

sure convergence of β̂n and the almost sure set convergence of Â∗
n are given in the489

following theorems.490

Theorem 4.2. If Assumptions (A1), (A2)(a) and (A3)(a) hold, then

lim
n→∞

β̂n(j) = θ(j), j = 1, . . . , q, a.s.

Proof. The proof is similar to that of Theorem 3.7, and so, omitted here.491

Theorem 4.3. If Assumptions (A1), (A3)(a) and (B1) hold, then there is an492

ω-space Ω0 satisfying P (Ω0) = 1 and for any ω ∈ Ω0, there is an integer N0(ω) such493

that Â∗
n = A∗ for all n ≥ N0(ω).494
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Proof. Combining the proof of Theorem 3.10 with the proof of Lemma 4 in [42]495

yields the theorem.496

4.3. Comparison of Algorithms 4.1 with related methods. Noting Re-497

mark 3.4, Algorithm 4.1 is more likely to produce sparse solutions than the algorithm498

in [42] and adaptive LASSO [43]. Moreover, Algorithm 4.1 covers the results of the499

adaptive LASSO and the algorithm in [42]. Specifically, when µ = γ = 1, by Remark500

4.1, Assumption (B1) is degenerated to λmax(n)
λmin(n)

√
log λmax(n)
λmin(n)

→ 0 a.s., which is consis-501

tent with Assumption (A3) in [42]. If one further assumes that λmax(n) = O(n) and502

λmin(n) = O(n) a.s., then the result is consistent with the adaptive LASSO.503

5. Application to typical scences.504

5.1. Structure selection for a class of NARX models. This section ap-505

plies Algorithm 3.1 to the structure selection of the NARX models with finite basis506

functions. One class of NARX models [41] is the kernel regression model:507

(5.1) yk+1 = θTNφN,k + wk+1,508

where yk+1 is the output, φN,k = [φ1(x(k)), . . . , φm(x(k))]T is the non-linear basis509

functions, x(k) contains all past and current variables, θN = [c1, . . . , cm]T is the cor-510

responding coefficient, wk+1 ∈ R is the noise and m is the number of basis functions.511

The objective of the NARX model structure selection is to select the contributing512

components from a large number of non-linear basis functions. Algorithm 3.1 can513

be applied directly to the model (5.1), and is more efficient in reducing the model514

size. Now we consider a special class of the NARX model: Hammerstein system as an515

example and give the corresponding theoretical results. The Hammerstein model con-516

sists of a static single-valued nonlinear element followed by a linear dynamic element,517

and can be described as:518

yk+1 = a1yk + · · ·+ any
yk+1−ny

+ b1f (uk) + · · ·+ bnu
f (uk+1−nu

) + wk+1,(5.2)519

f (uk) =

s∑
j=1

djgj (uk) ,520

where {gj(·)}sj=1 are the basis functions. The system (5.2) can be rewritten as the521

form (5.1) by denoting522

θN =
[
a1, . . . , any

, (b1d1) , . . . , (b1ds) , . . . , (bnu
d1) , . . . , (bnu

ds)
]T

,

φN,k=
[
yk, . . . , yk+1−ny , g1(uk) , . . . , gs(uk) , . . . , g1(uk+1−nu) , . . . , gs(uk+1−nu)

]T
.

523

Problem. The structure selection problem of the Hammerstein system (5.2)524

is to select the contributing basis functions from the candidate full basis functions525

{gj(·)}sj=1 using the observed data {yk+1, φN,k}nk=1.526

Before presenting the results, we first give the following assumptions and the527

corresponding proposition.528

(C1) A(z) = 1− a1z − · · · − anyz
ny is stable and b21 + · · ·+ b2nu

̸= 0;529

(C2) There is an interval [a, b] such that {1, g1(x), . . . , gs(x)} is linearly independent;530

(C3) The sequence {uk}k≥1 is i.i.d, independent of the noise {wk}k≥1, whose density531

function is positive and continuous on [a, b] and 0 < Eg2i (uk) < ∞ for 1 ≤ i ≤ s.532
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Proposition 5.1. [41] If the Hammerstein system (5.2) satisfies Assumptions533

(A1) and (C1)-(C3), then with 0 < c1 < c2, 0 < c3 < c4, we have534

c1n≤λmax

{
n∑

k=1

φN,kφ
T
N,k

}
≤c2n, c3n≤λmin

{
n∑

k=1

φN,kφ
T
N,k

}
≤c4n,(5.3)535

536

By use of Algorithm 3.1, we give the sparse estimate βN,n for the parameters in the537

system (5.2). Denote βN,n= [a1,n,...,any,n, (b1d1)n,...,(b1ds)n,...,(bnud1)n,...,(bnuds)n]
T538

and define χ = [χ(1), . . . , χ(s)]T with χ(l) =
∑nu

i=1(bidl)
2. Then, the estimate of χ can539

be obtained by χn = [χn(1), . . . , χn(s)]
T with χn(l) =

∑nu

i=1(bidl)
2
n. Moreover, denote540

D∗ = {l : dl = 0, for l = 1, . . . , s} , D∗
n = {l : χn(l) = 0, for l = 1, . . . , s}.Assumption541

(C1) guarantees that {l : χ(l) = 0} = D∗, which implies D∗
n can be regraded as an542

estimate of D∗. Then, we give the theoretical results for the structure selection of the543

contributing basis functions in {gj(·)}sj=1.544

Theorem 5.2. Take λn = nα with 1
2γ < α < 1

2 . If Assumptions (A1) and (C1)-545

(C3) hold for the Hammerstein system (5.2), then limn→∞ P (D∗
n = D∗) = 1.546

Proof. From (5.3) in Proposition 5.1, we have that λmax

{∑n
k=1 φN,kφ

T
N,k

}
=547

O(n), λmin

{∑n
k=1 φN,kφ

T
N,k

}
= O(n) and Eλmax

{∑n
k=1 φN,kφ

T
N,k

}
= O(n). More-548

over, we can choose dn = c5n with c5 > 0. Thus, noticing λn = nα with 1
2γ < α < 1

2 ,549

we can verify that (A2)-(A3) hold for the regression model (5.1)-(5.2). Thus, by550

Theorem 3.10, the results follow directly.551

5.2. Sparse identification of linear feedback control systems. This sec-552

tion applies Algorithm 3.1 to the sparse identification of the closed-loop systems using553

the self-tuning regulator (STR) control. Recall that the regressor is generally non-554

stationary and non-independent for linear feedback control systems [17]. The classical555

STR control, first proposed in [2], consists of an LS estimation algorithm for a linear556

stochastic dynamic system coupled online with a “least variance” control law. The557

goal of STR is to minimize the tracking error of the system with unknown parameters.558

Consider the following sparse ARX system:559

yk+1 = a1yk + · · ·+ any
yk+1−ny

+ b1uk + · · ·+ bnu
uk+1−nu

+ wk+1.(5.4)560

where yk+1 ∈ R is the system output, wk+1 ∈ R is the system noise, uk ∈ R is the561

feedback control, and a1, . . . , any and b1, . . . , bnu are the unknown sparse parameters.562

Denote563

A(z) = 1− a1z − · · · − anyz
ny , B(z) = b1 + b2z + · · ·+ bnuz

nu−1,

θ =
[
a1, . . . , any

, b1, . . . , bnu

]T
, φk =

[
yk, . . . , yk+1−ny

, uk, . . . , uk+1−nu

]T
.

564

Let {y∗k} be the deterministic bounded reference signal or regulation signal. For the565

system (5.4), two problems need to be solved: first, to use the STR control to make566

the closed-loop system track the reference signal {y∗k}; second, to select the zero567

parameters accurately and estimate the non-zero parameters asymptotically under568

the STR control.569

For the control step, let the LS parameter estimate for the system be θL,n =570

[a1,n, . . . , any,n, b1,n, . . . ,bnu,n]
T . The Certainty Equivalence Principle [2] suggests an571

adaptive control defined as572

(5.5) u0
k =

1

b1,k

{
y∗k+1 +

(
b1,kuk − θTL,kφk

)}
.573
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For the identification step, it is generally necessary to impose excitation conditions574

on the system, and thus, the control design (5.5) needs to be modified. Specifically,575

in order not to make the system worse after applying the excitation, the diminishing576

excitation technique is introduced and a zero-trending perturbation [14] is added to577

the control (5.5), i.e.,578

(5.6) uk = u0
k +

νk

r
ε̄/2
k−1

, k ≥ 1,579

where {νk} is an i.i.d and bounded stochastic sequence satisfying E(νk) = 0, E(ν2k) =580

1, rk−1 = 1+
∑k−1

i=1 ∥φi∥2, ε̄ ∈
(
0, 1

2(n̄yu+1)

)
and n̄yu = max{ny, nu}+ ny − 1. Next,581

we give the assumptions for (5.4) and the stability and optimality in Proposition 5.3.582

(D1) The noise {wk} satisfies lim
k→∞

1
k

∑k
j=1 w

2
j = R > 0 a.s.;583

(D2) The system is of minimum phase, i.e., B(z) ̸= 0,∀|z| ≤ 1;584

(D3) |any
|+ |bnu

| ≠ 0.585

Proposition 5.3. [14] If Assumptions (A1) and (D1)-(D3) hold, then the model
(5.4) with the attenuating excitation control (5.5) based on the LS parameter estimate
and (5.6) satisfies

lim sup
k→∞

1

k

k∑
i=1

(
∥ui∥2 + ∥yi∥2

)
< ∞ a.s. and lim

k→∞

1

k

k∑
i=1

(yi − y∗i )
2
= R a.s.,

and the regressor φk satisfies the following excitation:586

λmax(n)≜λmax

{
n∑

k=1

φkφ
T
k

}
=O(n), λmin(n)≜λmin

{
n∑

k=1

φkφ
T
k

}
≥cn1−ε̄(t+1) a.s.(5.7)587

for some c > 0, which may depend on sample paths and the ε̄ defined below (5.6).588

For the input and output signals generated by the system (5.4), by minimizing589

(3.2) in Algorithm 3.1, we can obtain the estimate of the sparse system parameters590

in (5.4). Denote the estimate as βL,n = [βL,n(1), . . . , βL,n(ny + nu)]
T , and set591

H∗ = {i : ai = 0 for 1 ≤ i ≤ ny; and bi−ny
= 0 for ny + 1 ≤ i ≤ ny + nu},592

H∗
n = {i : βL,n(i) = 0 for 1 ≤ i ≤ ny + nu}.593

Then, for the estimate βL,n obtained by Algorithm 3.1 with data {yk+1, φk}nk=1 gen-594

erated from (5.4)-(5.6), the following theorem demonstrates the set convergence of595

the estimate in probability.596

Theorem 5.4. If Assumptions (A1) and (D1)-(D3) hold, then597

(5.8) lim
n→∞

P (H∗
n = H∗) = 1,598

where λn = nτ in Algorithm 3.1 with τ ∈ ( 12γ + (1−γ)(2−γ)
8−2γ , 1

2 ) and ε̄ = 1−γ
8−2γ

1
n̄yu+1 in599

the controller (5.6).600

Proof. First, τ is well-defined, which can be verified by the following inequality:
1
2 −

(
1
2γ + (1−γ)(2−γ)

8−2γ

)
= 1

2 (1− γ)− (1−γ)(2−γ)
8−2γ = (1− γ) 1

4−γ > 0.

Denote λE,max(n) = λmax

{
E
∑n

k=1 φkφ
T
k

}
. From (5.7) in Proposition 5.3, we have

λE,max(n) = O(n). Moreover, we can choose dn = c1n
1−ε̄(t+1) with c1 ≤ c. By the
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specification of ε̄ below (5.6) and noting that τ < 1
2 , we have 0 < τ < 1

2 < 1−ε̄(t+1) <
1. Then, it follows

log λmax(n)
λmin(n)

= O
(

logn
n1−ε̄(t+1)

)
−−−−→
n→∞

0, λn

λmin(n)
= O

(
1

n1−ε̄(t+1)−τ

)
−−−−→
n→∞

0,

λn

λE,max(n)1/2
= O

(
1

n
1
2
−τ

)
−−−−→
n→∞

0,

√
λE,max(n)

dn
= O

(
1

n(1−ε̄(t+1))−1/2

)
−−−−→
n→∞

0.

Moreover, by noting ε̄ = 1−γ
8−2γ

1
t+1 and τ > 1

2γ + (1−γ)(2−γ)
8−2γ , we have 0 < τ −(

1
2γ + (1−γ)(2−γ)

8−2γ

)
= τ −

(
1
2γ + ε̄(t+1)(2−γ)

)
, which implies

λnd
2−γ
n

λE,max(n)2−
1
2γ

= O
(
nτ+(1−ε̄(t+1))(2−γ)−(2− 1

2γ)
)

= O
(
nτ−( 1

2γ+ε̄(t+1)(2−γ))
)
−−−−→
n→∞

∞.

By applying Theorem 3.10, the conclusion holds.601

Remark 5.5. The weighted Lγ regularization Algorithm 4.1 can also be applied602

to these two typical problems, and the analyses are similar, and hence, omitted here.603

6. Simulation study. This section sets up four simulations to validate the604

sparse identification performance of the proposed algorithms in this paper, includ-605

ing two finite impulse response (FIR) systems, a polynomial expansion NARX system606

and a linear feedback control system. In this paper, we use the particle swarm algo-607

rithm to solve (3.3) and (4.1).608

Example 1. For the simulation of sparsity and estimation performance, consider609

the following FIR system: yk+1 = θTφk + wk+1, where θ = (1q×1, 0(30−q)×1)
T with610

q = 5, 10, 15, 20, 25, φk are randomly generated in the interval [-5, 5], and the noise611

sequence {wk} is i.i.d. with the Gaussian distribution N(0, 0.1) and independent of612

{φk}. From Fig. 2, it can be seen that as the number of non-zero parameters q613

increases, the estimation error will be larger for the same number of samples, which614

also indicates that the smaller q is, the better the algorithm performs.615
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Fig. 2. Estimation error with different number of non-zero elements

Example 2. For the system (5.1), a common type of function expansion is the616

polynomial expansion [8], whose basis function is:617

(6.1) φj(x(k)) = yk−dj1
× · · · × yk−dji

× uk−dj,i+1
× · · · × uk−djl

,618

where dj1, . . . , djl ∈ N+, l = 1, . . . ,M with M being the maximum order of the
polynomial expansion. Consider such a polynomial expansion NARX model, where

M = nu = ny = 2. Then, the regressor φ(k) contains
(M+ny+nu)!
M !(ny+nu)!

= 15 of possible

basis functions. Let the real system be yk+1 = θTφk + wk+1, where θ = [θ1, ..., θ15],

φk =
[
u2
k, ukuk−1, ukyk, ukyk−1, uk, u

2
k−1, uk−1yk,

uk−1yk−1, uk−1, y
2
k, ykyk−1, yk, y

2
k−1, yk−1, 1

]T
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Table 1
The objective function and parameter settings corresponding to the algorithms

Algorithm Objective function Algorithm parameters
LS λn = 0
LASSO γ = 1, ρ = 1 λn = n0.25

Ridge regression ρ = 0 λn = n0.05

Elastic net γ = 1 ρ = 0.5, λn = n0.25

Algorithm 3.1 ρ = 1 γ = 0.4, λn = n0.25

The real parameters are set as θ = [0,−0.5, 0.7, 0, 0.45, 0, 0,−0.006,−0.5, 0, 0.008,619

−0.2, 0, 1, 0]T . In this example, we use LS method ([6]), LASSO method ([33]), ridge620

regression method ([16]), elastic net method ([44]), and Algorithm 3.1 to identify the621

system parameters, respectively. A unified objective function of these methods takes622

the following form623

Jn+1(β) =

n∑
k=1

(
yk+1 − βTφk

)2
+ λnρ

q∑
l=1

|β(l)|γ + λn
1− ρ

2

q∑
l=1

|β(l)|2.(6.2)624

The form of the objective function corresponding to the algorithm and the param-625

eter settings are given in Table 1. For this system, set the initial value to be i.i.d626

with the input {uk}, obeying the uniform distribution U(−1, 1) and the noise {wk},627

independent of {uk}, obeying the normal distribution N(0, 0.1).628

Table 2 and Fig. 3 show the parameter estimation results of Algorithm 3.1, LS,629

LASSO, ridge regression, and elastic net with 200 observations, respectively. From630

Table 2 and Fig. 3, we can see that the Algorithm 3.1 has about the same accuracy631

in estimating the non-zero parameters as the rest of the algorithms, but at the same632

time, can significantly increase the accuracy of the selection of the zero parameters.633

When n = 200, the approximation solution of the estimates of the zero parameters634

are all less than 10−16, indicating that Algorithm 3.1 performs better than the other635

algorithms in identifying the zero parameters. Table 2 also shows the running time of636

different methods. It is worth pointing out that the non-convex criterion adopted in637

this paper greatly improves the identification accuracy although it inevitably increases638

the computational complexity and the running time is relatively long.639

Table 2
Comparison between Algorithm 3.1, LS, LASSO, Ridge regression and Elastic net under 200

observations.

Algorithms θ1 = 0 θ2 = −0.5 θ5 = 0.45 θ7 = 0 Time

Algorithm 2.1 −2.2404× 10−16 −0.4950 0.4472 3.0363× 10−17 6.9296s

LS −0.0011 −0.5010 0.4517 −0.0036 0.0228s

LASSO −0.0015 −0.4958 0.4481 −7.6290×10−4 0.5586s

Ridge regression −6.9156× 10−4 −0.2805 0.3229 −0.0015 0.0348s

Elastic net −0.0016 −0.4975 0.4493 −0.0022 0.6818s

Example 3. This example shows the application of the Algorithm 3.1 to the640

identification of a linear feedback control system. Let the ARX system be641

yk+1=θTφk + wk+1=θ1yk + · · ·+ θ5yk+1−5 + θ6uk + · · ·+ θ10uk+1−5 + wk+1,(6.3)642

where the true sparse parameters are θ = [0.5, 3, 0,−1, 0.5, 0, 0, 0, 0, 0]T . The noise643

{wk} is i.i.d, obeying the normal distribution N(0, 0.025). The discrete reference644
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Fig. 3. Comparison between Algorithm 3.1, LS, LASSO, Ridge regression and Elastic net.

Table 3
Comparisons between Algorithm 3.1, LS, LASSO, Ridge regression and Elastic net at the 200th

iteration.

N=200
Algorithm θ2 = 0 θ4 = 0 θ10 = 0
Algorithm 1 1.0433×10−17 7.3991×10−17 2.7050×10−17

LS 0.0367 −0.0469 −0.1366
LASSO 0.0486 −0.0912 −0.1460
Ridge regression 0.0358 −0.0160 −0.0386
Elastic net 0.0481 −0.0210 −0.1476

signal is written as y∗k+1 = sin
(

1
200k

)
, k ≥ 0. Let the LS estimate be θk = [θk(1), . . . ,645

θk(10)]
T , then the self-tuning regulation control with diminishing excitation is646

(6.4) uk =
1

θk(6)

(
y∗k+1 −

(
θk(6)uk − θTk φk

))
+

w′
k

r
ε̄/2
k−1

,647

648 where rk−1 = 1+
∑k−1

l=1 ∥φl∥2, ε̄ = 1
20 and {w′

k} are i.i.d with the uniform distribution649

U(−0.1, 0.1). Fig. 4 plots the outputs of the closed-loop control system (6.3)-(6.4)650

and the reference signals.651

For the identification problem of the closed-loop control system, Table 3 and652

Fig. 5 show that, as long as excitation conditions are satisfied, Algorithm 3.1 can653

accurately distinguish between zero and non-zero parameters, and has more precise654

estimates of the zero parameters than other algorithms.655

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time
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1100
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1400

Fig. 4. Trajectories of yk+1 v.s. y∗k+1 for Example 2.

Example 4. This example aims to compare the performance of LS in [6], adaptive656

LASSO in [42] with Algorithm 4.1 in this paper. Consider the following FIR system:657
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Fig. 5. Comparisons between Algorithm 3.1, LS, LASSO, Ridge regression and Elastic net.
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Fig. 6. Comparison between Algorithm 4.1, LS and adaptive LASSO.

yk+1 = θTφk+wk+1, where θ = [0,−1, 1, 2, 0.5, 0, 0, 0]T , φk are randomly generated in658

the interval [-5, 5], and the noise sequence {wk} is i.i.d. with the Gaussian distribution659

N(0, 0.1) and independent of {φk}. Set λn = n0.65 for the adaptive LASSO in [42]660

and Algorithm 4.1. It can be seen from Fig. 6, Algorithm 4.1 provides a more sparse661

estimate of the system parameters than LS and the algorithm in [42], and a more662

accurate estimate than the adaptive LASSO in [42].663

7. Conclusion. This paper investigates two kinds of sparse identification algo-664

rithms based on the non-convex Lγ penalty for the stochastic systems with non-i.i.d665

and non-stationary observation sequences and non-i.i.d noise. First, a one-step sparse666

parameter identification algorithm is proposed based on the Lγ(0 < γ < 1) penalty667

and the residual sum of squares. The almost sure convergence, the set convergence668

in probability, and the asymptotic normality property of the estimates generated by669

the proposed algorithm are established. Moreover, to improve the performance of670

the Lγ regularization method, a two-step algorithm based on the adaptively weighted671

Lγ(0 < γ ≤ 1) penalty is provided. Not only is the almost sure parameter conver-672

gence of the estimates established, but also the almost sure set convergence is achieved.673
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Compared with existing literature, the theoretical results of the algorithms in this pa-674

per are applicable to the stochastic sparse system with non-i.i.d and non-stationary675

observation sequences and non-i.i.d noise and the algorithms are more efficient in676

sparsity induction. Furthermore, these algorithms are successfully implemented in677

the structure selection of the NARX models and the sparse parameter identification678

of the linear feedback control systems.679

In the future, since sparsity is often accompanied by high dimensionality, it is680

interesting to consider the identification of stochastic sparse systems in high dimen-681

sional settings, i.e., p = p(n). Moreover, it is essential to propose a recursive algorithm682

for the sparse system identification, and consequently, to design controls.683
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